Learning dispatching rules via an association rule mining approach
نویسندگان
چکیده
This thesis proposes a new idea using association rule mining-based approach for discovering dispatching rules in production data. Decision trees have previously been used for the same purpose of finding dispatching rules. However, the nature of the decision tree as a classification method may cause incomplete discovery of dispatching rules, which can be complemented by association rule mining approach. Thus, the hidden dispatching rules can be detected in the use of association rule mining method. Numerical examples of scheduling problems are presented to illustrate all of our results. In those examples, the schedule data of single machine system is analyzed by decision tree and association rule mining, and findings of two learning methods are compared as well. Furthermore, association rule mining technique is applied to generate dispatching principles in a 6 x 6 job shop scheduling problem. This means our idea can be applicable to not only single machine systems, but also other ranges of scheduling problems with multiple machines. The insight gained provides the knowledge that can be used to make a scheduling decision in the future.
منابع مشابه
Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining
The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملRare Association Rule Mining via Transaction Clustering
Rare association rule mining has received a great deal of attention in the recent past. In this research, we use transaction clustering as a pre-processing mechanism to generate rare association rules. The basic concept underlying transaction clustering stems from the concept of large items as defined by traditional association rule mining algorithms. We make use of an approach proposed by Koh ...
متن کاملApplying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures
Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...
متن کاملIntroducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015